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The Barker and Henderson perturbation theory was used for deriving an expression for the 
second order perturbation term in the free energy expansion of liquid mixtures. This extended 
theory was then employed to calculate excess thermodynamic functions A F E , AGE and A 
of several model binary systems. The use of the second order term leads to a better agreement 
between the theoretical values and experimental or Monte Carlo data. 

Prediction of thermodynamic functions and a correct quantitative interpretation of 
thermodynamic behaviour of liquids and liquid mixtures in a wide temperature and 
pressure range is important not only from a theoretical point of view, but it also plays 
a significant role in chemical engineering applications. Because of this fact, a great deal 
of attention is now being paid to modern exact theories of the liquid state. 

Especially good results have been obtained with perturbation m e t h o d s 1 - 5 , which 
are based on the knowledge of thermodynamic functions of simpler model systems 
(e.g. a system of hard spheres) 6 - 9 . 

One of the best variants of the perturbation theory is that by Barker and Henderson, 
which takes into account both the "softness" (finite steepness) of the repulsive part 
of the potential and interactions due to the attractive forces. These authors have 
formulated the perturbation expansion for pure substances to second order1 '2 , 
whereas for mixtures only to first order3 . 

It was the aim of our work to derive an expression which would define the second 
order perturbation term in the free energy expansion of a liquid mixture and to verify 
the applicability of the extended perturbation method to the description of real sys-
tems. 

THEORETICAL 

For an s-component mixture Barker and Henderson3 have derived the following first 
order perturbation expansion for the free energy F 
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with F0 being the free energy of the hard sphere reference mixture9, N the total num-
ber of particles, and n the total number density; the symbols go\r) denote the radial 
distribution functions of individual components in the mixture of additive hard sphe-
res8, ukl(r) is the interaction potential and xk stands for the mole fraction of compo-
nent i. 

The quantities <5kl are given by 

fa kl 
« 5 k l = | {1 - e x p [ - 0 « k l ( r ) ] } d r , (2) 

where akl is a parameter in the interaction potential for which it holds ukl(r = crkl) = 
= 0. 

The hard sphere diameters in the Barker and Henderson treatment are defined by 

dk, - 0-5(<5kk + <5„) . (3) 

In comparison with pure liquids, considerable difficulties arise in deriving the second 
order term and no procedure has been published so far which would follow the ori-
ginal Barker and Henderson ideas without employing any further approximation. 
(The expression published in10 for the second order term of a mixture cannot be 
derived without further simplifying assumptions.) 

We have developed a method which allows one to derive and compute this term 
without introducing any further simplifications and in which the examined system 
of interacting particles is interpreted as an ensemble of subsystems formed by particles 
lying in microscopically thin spherical shells which surround arbitrary central par-
ticles. 

Within terms of the Barker and Henderson theory we also assume the existence 
of correlations among particle number fluctuations only in shells surrounding the 
same central particle. The partition function of a s-component mixture may be then 
written in the form 

Q = Q0 f l Rexp [ - 0 t £ (JVi)i 4,]>o}N l / 2 • (4) 
1=1 k= 1 i 

The symbol Q0 denotes the partition function of the reference hard sphere mixture, 
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(iVk)i is the number of particles k lying in a spherical shell i of the radius r{ and micro-
scopical thickness |r i + 1 — r ; | surrounding an arbitrary fixed central particle I, and u 
represents the mean value of the interaction potential ukl(r) on the interval (ri5 r i + 1>. 
The mean denoted by the angle brackets <>o is performed over all configurations of 
the reference system with one fixed particle. 

From a formal point of view expression (4) is the product of partition functions 
of mutually non-interacting subsystems and may be rewritten as 

Q = QoQx n < e x P I - P l l < , ] > N l / 2 , (5) 
1=1 k=l i 

where (^k)i denotes the actual deviation in the number of particles k in a spherical 
shell i surrounding an arbitrary central particle I from its value averaged over all 
reference system configurations, 

= - <(Ni),)0 • (<*) 

The partition function Q1 includes the first order perturbation term and is equal 
to 

6 i = f l { e x P l - f i t l « . > o < J } N l / 2 • (7) 
1 = 1 k= 1 i 

If, following the Barker and Henderson ideas, we will further assume that mutual 
interactions among particles belonging to different shells around the same central 
particle are insignificant, the correlations of the type <(^k)i (^k')i)o for 4= i or 
k' =t= k may be neglected. This leads to 

0 for z" 4= I or k' + k 

w d ; kT for i' = i and k' = k . 
T.Vi.fjV *k 

This approximation is somewhat more crude than neglection of correlations in shells 
belonging to different central molecules. However, because the contribution from the 
second order terms amounts to several percent of the absolute value due to a rapid 
convergence of the derived expressions, it is fully acceptable. 

Considering validity of the relation 

A4)J 
= vi 

T,Vi,/jV;ik 

" 5 k ) , 

AMI) i . 
w 

T . V j ,/i* k " * k 

(in which V{ denotes the microscopical volume of the shell and resp. repre-
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sents the chemical potential resp. density of reference particles k in a spherical shell 
i surrounding an arbitrary central particle /), we obtain the following relation for 
the second order per turbat ion term in the expression for the free energy of the mixture 

(F = I F,) 

NkT k,i 
C^k wl 

JT,V,/ik" /kJ 1 
MklW 4 7 l r 2 d r (10) 

where the expression in the outermost brackets contains quantities in the reference 
hard sphere mixture and subscript I denotes the type of the central particle. 

The derivative of density nk with respect to chemical potential fik cannot be calcu-
lated directly because it must be performed at constant chemical potentials of par-
ticles of all remaining components, (5nk/5/ik)TiV,, ik"^k. 

However, it can be obtained by using relations valid in mult icomponent systems1 1 . 
To this purpose let us define an sxs square matrix, A = {ak l}, whose elements 

are defined by 

«ki = (^k/ 5 n i )nr* i ,T ,v> k, I = 1, . . . , s . (11) 

Then we can write 

m' * i,T,V daki 
= (det A) /det A m 

An expression resulting af ter substitution of relation (12) into Eq. (10) makes it 
then possible to calculate numerically the second order per turbat ion term f rom radial 
distribution functions of the reference hard sphere mixture, because in a system with 

Table I 
Parameters of the Lennard-Jones Potential for Pure Components of the Investigated Mixtures 

Substance a, A ejk, K cr/crAr s/eAr Ref. 

Ar 3-405 119-8 1-000 1-000 3 

Kr 3-633 167-3 1-067 1-396 3 

CS2 4-430 446-0 1-301 3-723 13, 16 

CC14 5-310 454-5 1-559 3-794 13, 16 

C2C14 5-390 480-0 1-583 4-007 13, 17 
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one fixed particle any density nk is a function of the shell radius and it holds 

W'')]. = « W , (13) 

in which denotes the mean number density of particles k. 

The calculation of the thermodynamic functions of a mixture which would take 
into account relation (10) is rather complicated in comparison with pure substances. 
It is not possible to employ the well-known Laplace transforms of the radial distri-
bution functions8 , but instead it is necessary to perform inversions of these Laplace 
transforms in a wider range of intermolecular separations. 

RESULTS AND DISCUSSION 

The outlined theory was used in a usual manner to obtain values of the excess thermo-
dynamic functions AFE , AGE and AHB for several model binary systems. The results 
were compared with experimental data and with existing pseudoexperimental Monte 
Carlo data. 

Concentration dependences of functions AFE , AGE and AHB were calculated for 
the following mixtures: (I) Ar(l)-Kr(2) , (II) CS2(1)-CC14(2), (III) CS2(1)-C2C14(2). 

From the point of view of intermolecular interactions the system Ar -Kr represents 
one of simplest and most thoroughly examined cases and together with the corres-
ponding Monte Carlo data1 2 it may serve for evaluating the correctness of the pro-
posed method. 

The other two systems were selected to verify the applicability of the theory, which 
itself works with spherically symmetrical functions only, to the description of binary 
mixtures whose one or both components are formed by molecules exhibiting unnegli-
gible deviations from spherical symmetry. 

The pair intermolecular interactions of all the components were described by the 
spherically symmetrical Lennard-Jones 12 — 6 potential. The parameters e and a 
in this potential were taken for Ar and Kr f rom the literature3 or for CS2, CC14, 
and C2C14 they were calculated from critical data according to generalized rules 
recommended by Bellemans and coworkers1 3 . The employed parameters are collected 
in Table I. \ 

Cross parameters e1 2 and a 1 2 were obtained by using the Lorentz-Berthelot rule1 4 . 
Besides that, we have also tried the harmonic-mean rule1 4 for e1 2 ; however, within 
the framework of the other approximations employed, the use of the two rules leads 
to insignificant differences between the thermodynamic functions. (Although these 
rules cannot be so far fully justified theoretically, they seem to be appropriate for 
the selected substances. This problem as well as effects of the other approximations 
will be discussed below.) 
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The comparison of results obtained by the perturbation method with the Monte 
Carlo and experimental data is given in Table II. 

Table III contains a comparison between our results and available values computed 
by other common theories of the liquid state. 

Although high machine-time demands have prevented us from performing the 
computations for more systems (the perturbation theory extended to second order 
was used only for equimolecular mixtures), the comparison between the theory and 
experiment yields important results and leads to the following conclusions: The use 
of the second order term leads in all the investigated cases to better agreement with 
experimental data. This improvement is not too significant, but it conforms to the 
basic assumption of a rapid convergence of the derived expansions. 

Comparisons with experimental data on real systems are not fully adequate, since 
to approximations necessarily imposed on derived formulas by requirements of 
possible mathematical elaboration, simplifications in the intermolecular potential and 
in the geometry of the molecules must be added. Only a comparison with correspond-
ing Monte Carlo data may be considered as quite rigorous; these data, however, 
may be often inaccurate. In our work, the main emphasis is put on comparisons with 
the Monte Carlo data. 

The inaccurate representation of the course of the interaction potential is closely 
related to the unambiguousness in the determination of parameters s and a. Similarly, 

TABLE I I I 

Comparison of Results of Some Theories of the Liquid State with Experiment. Values of Excess 
Thermodynamic Functions AVe, AGe and AHE of Equimolecular Ar-Kr and CS2-CC14 Mix-
tures 

Function System T, K Explt." MC Pert. vdWh HTC vdW-2d 

A F e Ar-Kr 115-8 - 0 - 5 2 - 0 - 5 4 ± 0-20 - 0-43 - 0-78 - 0 0 4 - 0-50 
(cm3/mol) CS2-CC14 298 15 + 0-32 — + 1-06 4-42 - 0-99 

A G e Ar-Kr 115 8 84-0 34 ± 10 35-6 37-0 96-0 54-0 
(J/mol) CS2-CC14 298 15 157 — 358 — 1 095 - 5 1 

A He Ar-Kr 115-8 _ - 34 ± 40 - 4 2 - 2 -50 -0 
(J/mol) CS2-CC14 298-15 466 - 657 - 1 523 - 1 9 

" The data are from the following references: Ar-Kr (ref.15), CS2-CC14 (ref.16), MC (ref.12), 
b Results of the van der Waals theory3, c Results of the two-fluid hole theory16, d Results of the 
two-fluid corresponding states theory with van der Waals mixing rules16. 
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rules for calculation of e12 and a12 are to a large extent of empirical origin. In our 
work we have employed relations whose applicability to similar substances (nonpolar 
and approximately spherically symmetrical) has been verified in other works3,16. 

The outlined inaccuracies will be reflected mainly in the value of the first order 
perturbation term; they affect the second order term in a similar manner, however, 
their contribution to the resulting absolute value of the thermodynamic quantity will 
be substantially lower due to a rapid convergence of the derived expressions. 

Our results show good agreement with the Monte Carlo data. Consequently they 
describe well also nonpolar liquids whose molecules exhibit neither larger deviations 
from spherical symmetry nor any specific interactions, so that their intermolecular 
potentials might be well described by the Lennard-Jones function. In this case, 
good agreement with experimental data is obtained not only for values of the excess 
functions but also for the computed volume F ( + l-5%) and the enthalpy of vapori-
zation AHyap (±3-0%) of both pure components and the mixture (system Ar-Kr). 

The use of the spherically symmetrical potential for substances such as CS2 and 
C2C14 represents the largest source of inaccuracies in applying the perturbation ex-
pansion. Agreement with the experimental data is not so good here. However, it was 
found that although the perturbation variant is in such cases inappropriate for calcu-
lation of absolute values of the volume or the heat of vaporization, it leads to satis-
factory agreement for the excess functions. 

In conclusion it may be stated that the investigated method, which — in comparison 
with other theories of fluids — employs fewer approximations, does not introduce 
any experimental findings into the theory nor does it create a priori and unjustified 
assumptions on the liquid structure, can offer satisfactory prediction for all thermo-
dynamic excess functions even in cases if one or both components display smaller 
deviations from spherical symmetry or if molecules of both components differ con-
siderably in their magnitudes. A minimum of parameters (e.g. parameters in the 
Lennard-Jones potential) is required for the computation. Agreement with experi-
ment is comparable or even better than for other common theories. 
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